Art-19. If $m_1(x)$ and $m_2(x)$ be two polynomials of the lowest degree, with scalar coefficients, such that $m_1(A) = O$, $m_2(A) = O$ then each of $m_1(x)$, $m_2(x)$ is a scalar multiple of the other.

Proof: Divide $m_2(x)$ by $m_1(x)$. Let q be the quotient and r(x) be the remainder.

$$m_2(x) = q m_1(x) + r(x)$$
 ...(1)

where either r(x) = 0 or degree of r(x) is less than the degree of $m_1(x)$.

Assume that $r(x) \neq 0$.

From (1),
$$m_2(A) = q m_1(A) + r(A)$$

$$\Rightarrow$$
 O = O + $r(A)$

$$\Rightarrow$$
 $r(A) = O$

so that A satisfies an equation of degree lower than that of $m_1(x)$. Thus, we arrive a contradiction.

$$\therefore r(x) = 0$$

:. from (1),
$$m_2(x) = q m_1(x)$$
.

Hence the result.

4 -- + 20 Minimal Polynomial and Minimum Equation

Hence the result.

Art-20. Minimal Polynomial and Minimum Equation

If m(x) be a scalar polynomial of the lowest degree with leading coefficient unapproximation. such that m(x) = 0 is satisfied by A i.e. m(A) = 0, then the polynomial m(x) is called the minimal polynomial of A and m(x) = 0 is called the minimum equation of A.

Note. The degree of the minimal equation of an n-rowed matrix is less than or equal to that of its characteristic equation which is n.

Derogatory and Non-derogatory Matrices

An n-rowed matrix is said to be derogatory or non-derogatory, according as the degree of its minimal equation is less than or equal to n.

Art-21. If h(x) be any polynomial with scalar coefficients, such that h(A) = 0 and if m(x) = 0 be the minimal equal of A, then there exists a polynomial q(x) such that

$$h(x) = m(x) \ q(x)$$

Proof: Divide h(x) by m(x). Let q(x) be the quotient and r(x) be the remainder.

$$h(x) = q(x) m(x) + r(x)$$

where either r(x) = 0 or degree of r(x) is less than the degree of m(x).

Assume that
$$r(x) \neq 0$$
.

Assume that
$$r(x) \neq 0$$
.
From (1) $h(A) = q(A) m(A) + r(A)$

...(1)

$$O = O + r(A)$$

$$r(A) = O$$

so that A satisfies an equation of degree lower than that of the minimal equation. Thus we arrive at a contradiction.

$$r(x) = 0$$

$$h(x) = m(x) \ q(x).$$

Cor. Minimal polynomial is unique.

If possible, suppose that $m_1(x)$, m_2 are two minimal polynomials of A.

- $m_1(x)$ divides $m_2(x)$ and $m_2(x)$ divides $m_1(x)$. Since $m_1(x)$ and $m_2(x)$ have their leading coefficient unity.
 - $m_1(x) = m_2(x)$
 - minimal polynomial is unique.

Art-22. Prove that

- (i) each root of minimal equation of A is also a root of characteristic equation of A.
- (ii) the distinct roots of the characteristic equation of A are also the distinct roots of the minimal equation of A.

Proof: (i) Let $\phi(x) = 0$ be the characteristic equation and m(x) = 0 be the minimal equation of A. Then

$$\phi(x) = q(x) \ m(x).$$

- every root of m(x) = 0 is also root of $\phi(x) = 0$.
- (ii) Let $\phi(x) = 0$ be the characteristic equation

m(x) = 0 be the minimal equation of A. and

there exists a matrix polynomial L(x) such that

$$m(x) = (A - x 1) L(x)$$

- |m(x) 1| = |A x 1| |L(x)|
- $\{m(x)\}^n = \phi(x) | L(x) |$
- each root of $\phi(x) = 0$ is also a root of $\{m(x)\}^n = 0$ and thus also of m(x) = 0.

The L Counting each repeated root of characteristic equation $\phi(x) = 0$ only once, the set affile roots of $\phi(x) = 0$ is the same as that of m(x) = 0. The roots of these two polynomials and any differ in respect of their multiplicities.

The 2. If the roots of the characteristic equation of an n-rowed matrix A are all different. then its minimal equation is also of nth degree and, in fact, apart from the constant factor

distributed a simple with the characteristic equation and, as such, the matrix is non-

Example 1. Find the characteristic equation and the minimal equation of the

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$$

Also show that A is non-derogatory.

Sol

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies \lambda I = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$\therefore A - \lambda I = \begin{bmatrix} 8 - \lambda & -6 & 2 \\ -6 & 7 - \lambda & -4 \\ 2 & -4 & 3 - \lambda \end{bmatrix}$$

The characteristic equation of A is $|A - \lambda I| = 0$

or
$$\begin{vmatrix} 8-\lambda & -6 & 2 \\ -6 & 7-\lambda & -4 \\ 2 & -4 & 3-\lambda \end{vmatrix} = 0$$

or
$$(8-\lambda)\begin{vmatrix} 7-\lambda & -4 \\ -4 & 3-\lambda \end{vmatrix} - (-6)\begin{vmatrix} -6 & -4 \\ 2 & 3-\lambda \end{vmatrix} + 2\begin{vmatrix} -6 & 7-\lambda \\ 2 & -4 \end{vmatrix} = 0$$

or
$$(8-\lambda)[(7-\lambda)(3-\lambda)-16]+6[-6(3-\lambda)+8]+2[24-2(7-\lambda)]=0$$

or $(8-\lambda)[\lambda^2-10\lambda+21-16]+6[-6(3-\lambda)+8]+2[24-2(7-\lambda)]=0$

or
$$(8-\lambda)[\lambda^2 - 10\lambda + 21 - 16] + 6[-6(3-\lambda) + 8] + 2[24 - 2(7-\lambda)] = 0$$

or $(8-\lambda)(\lambda^2 - 10\lambda + 5) + 6(6\lambda - 10) + 6(3-\lambda) + 2(24-14+2\lambda) = 0$

or
$$(8-\lambda)(\lambda^2-10\lambda+5)+6(6\lambda-10)+2(2\lambda+10)=0$$

or $-\lambda^3+18\lambda^2-85\lambda+40$

or
$$-\lambda^3 + 18\lambda^2 - 85\lambda + 40 + 36\lambda - 60 + 4\lambda + 20 = 0$$

or
$$-\lambda^3 + 18\lambda^2 - 45\lambda = 0$$
 or $\lambda^3 - 18\lambda^2 + 45\lambda = 0$
or $\lambda(\lambda^2 - 18\lambda + 45) = 0$ or $\lambda(\lambda^3 - 18\lambda^2 + 45\lambda) = 0$

or
$$\lambda(\lambda^2 - 18\lambda + 45) = 0$$
 or $\lambda^3 - 18\lambda^2 + 45\lambda = 0$
 $\lambda = 0, 3, 15$ are the characterist

 $\lambda = 0$, 3, 15 are the characteristic roots of A.

Since the characteristic roots of A are all different.

minimal equation of A is
$$\lambda^3 = 18\lambda^2 + 45\lambda = 0$$

Since degree of characteristic equation of A and minimal equation of A is same A is non derogatory.

Example 2. Find the minimal polynomial of the matrix :

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -2 \end{bmatrix}$$

(G.N.D.U. 2007; H.P.U. 2011)

Sol. The given equation is

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -2 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \lambda I = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 & 3 \\ 0 & 5 - \lambda & -3 \\ 0 & 0 & -2 - \lambda \end{bmatrix}$$

The characteristic equation of A is $|A - \lambda I| = 0$

or
$$\begin{vmatrix} 1-\lambda & -2 & 3 \\ 0 & 5-\lambda & -3 \\ 0 & 0 & -2-\lambda \end{vmatrix} = 0$$

or
$$(1-\lambda)(5-\lambda)(-2-\lambda)=0$$

[Product of the diagonal elements]

or
$$(\lambda - 1)(\lambda - 5)(\lambda + 2) = 0$$

or
$$(\lambda^2 - 6 \lambda + 5) (\lambda + 2) = 0$$

or
$$\lambda^3 - 4 \lambda^2 - 7 \lambda + 10 = 0$$

Its roots are 1, 5, -2

Since the characteristic roots of A are all different.

 $\therefore \text{ minimal equation of A is } \lambda^3 - 4 \lambda^2 - 7 \lambda + 10 = 0.$

Example 3. If
$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
, find the minimal polynomial of A. Find A^{-1} ,

thing the minimal polynomial.

(G.N.D.U. 2006)

$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$

$$1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \lambda 1 = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$\therefore A - \lambda \mathbf{1} = \begin{bmatrix} 5 - \lambda & -6 & -6 \\ -1 & 4 - \lambda & 2 \\ 3 & -6 & -4 - \lambda \end{bmatrix}$$

The characteristic equation of A is $|A - \lambda I| = 0$

or
$$(5-\lambda)\begin{vmatrix} 4-\lambda & 2 \\ -6 & -4-\lambda \end{vmatrix} - (-6)\begin{vmatrix} -1 & 2 \\ 3 & -4-\lambda \end{vmatrix} - 6\begin{vmatrix} -1 & -4-\lambda \\ 3 & -6\end{vmatrix}$$

or
$$(5-\lambda)[(4-\lambda)(-4-\lambda)+12]+6[(-1)(-4-\lambda)-6]-6[6-3(4-\lambda)]$$

or
$$(5-\lambda)(\lambda^2-16+12)+6(4+\lambda-6)-6(6-12+3\lambda)=0$$

or
$$-\lambda^3 + 4\lambda + 5\lambda^2 - 20 + 6\lambda - 12 - 18\lambda + 36 = 0$$

or
$$-\lambda^3 + 5\lambda^2 - 8\lambda + 4 = 0$$

or
$$\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$

Putting $\lambda = 1$ in (1), we get

$$1-5+8-4=0$$
 or $0=0$

$$\lambda = 1$$
 is a roof of (1).

1	1	-5	8	- 4
	3	1	- 4	4
ăn.,	1	-4	4	0

:. remaining roots of (1) are given by

$$\lambda^2 - 4\lambda + 4 = 0$$

$$(\lambda - 2)^2 = 0$$
 or $\lambda = 2.2$

 $\lambda = 1, 2, 2$ are roots of characteristic equation of A.

Distinct roots of characteristic equation of A are 1, 2.

- 1, 2 are also roots of minimal equation of A.
- minimal polynomial of A is either

$$(\lambda - 1)(\lambda - 2)$$
 in $\lambda^2 - 3\lambda + 2$ or $\lambda^3 - 5\lambda^2 + 8\lambda - 4$

$$\begin{bmatrix}
13 & -18 & -18 \\
-3 & 10 & 6 \\
9 & -18 & -14
\end{bmatrix} - 3 \begin{bmatrix}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{bmatrix} + 2 \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
13 & -18 & -18 \\
-3 & 10 & 6 \\
9 & -18 & -14
\end{bmatrix} + \begin{bmatrix}
-15 & 18 & 18 \\
3 & -12 & -6 \\
-9 & 18 & 12
\end{bmatrix} + \begin{bmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
-13 + 15 + 2 & -18 + 18 + 0 & -18 + 18 + 0 \\
-3 + 3 + 0 & 10 - 12 + 2 & 6 - 6 + 0 \\
9 - 9 + 0 & -18 + 18 + 0 & -14 + 12 + 2
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$A^2 - 3A + 2I = 0$$

$$\therefore$$
 minimal equation of A is $\lambda^2 - 3\lambda + 2 = 0$

Now
$$A^2 - 3A + 2I = 0$$

Pre-multiplying both sides by A⁻¹, we get,

$$A^{-1}A^2 - 3A^{-1}A + 2A^{-1}I = 0$$

$$A - 31 + 2A^{-1} = 0$$

$$\Rightarrow$$
 2A⁻¹ = -A + 31

$$\Rightarrow 2A^{-1} = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow 2A^{-1} = \begin{bmatrix} -5 & 6 & 6 \\ 1 & -4 & -2 \\ -3 & 6 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\Rightarrow 2A^{-1} = \begin{bmatrix} -5+3 & 6+0 & 6+0 \\ 1+0 & -4+3 & -2+0 \\ -3+0 & 6+0 & 4+3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{2} \begin{bmatrix} -2 & 6 & 6 \\ 1 & -1 & -2 \\ -3 & 6 & 7 \end{bmatrix}$$

EXERCISE 6 (e)