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Art-1. Linear Momentum

If m 1s the mass of a particle moving with velocity t then it linear mone

the product m ¥ and is generally denoted by

. — = .,:
v p mai

Let (x, y) be the position of the patticle at any time {

-y dv A dv A
UV = = 4 &
di dt

( 4 al\' A
P o=mv = p=|m !\] bfm } /
J i it

. (!\ (,\
components of momentum are m—— and m

- They are generally denole
dr dt
by p, and P,
(i_\‘ (I\' 1
p, =m— and p =pm-=
. dt ) di
Art-2. Conservation of Linear Momentum
We have P =mv (N
According to Newton's sccond law of motion, the rate of change of momentum i
.equal to the applied force F
) dp =
ie. L. 7
dt
If F =0 ie no force acts on the particle, the
dp ap =
=
dr
Ixitegrating w.rt. f, we get,
P = constant vector
or  m7v =constant vector [ of (1l
= the linear mom

entum of a particle

applied force. This is known as the principle

: ok i
remains constant in the abyence o ¢
of conservation of linear momentunt

/
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Art-3. Angular Momentum
We know that linear momentum is a vector guantity and so it can have a moment
about any point in the plane.
The moment of linear momentum about a puini in the plane is called the moment of
momentum or dngular momentuin,
If m is the mass and v is the velocity of the particle, the angular momentum J of the
linear momentum m v about z point O at a distance r 1n the plane of O 1s given by
J=muvur (1)

The direction of J is perpendicular to the plane.

Also we know that the moment of a vector about a point is equal to the algebraic
sum of the moments of its components about the same point.
the magnitude of the angular momentum of a particle about the ongin O 1s

»
‘.

given by
dx 7))
= _— Yy tTm— . X
J 7 dr dt
(/}’ (/I ) ( g, )
or ] =ml|x—-y— A
( a7 d J

where m is the mass of the particle.
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When the momentum vector 1s resolved along )

\l -~
nd pe vector drawn from
h{"d pempendicular 10 the radius vectol drawn ‘T i
the ongin, then 3

dr
». = momentum along radius vector =/ “F k
dr
[ velocity along radius vecto! =
\ L dt I mde
. b
. T . - | ¢
and ». = momentum perpendicular to radius vector i ¥
[
B do ,
=1y — 0] x I
dt i

[ velocity perp. to radius veetgy ri’fi

. _ (.
Now angular momentum along the radius vector about O = 0, as radjy, vegy
Ql

passes through O.

(
: . - . - d
the angular momentum perp. to radius vector (m/ " ) r=m2 0
di
) ({0
]l =mr — 0
dt A

The units of angular momentum are obtained by multiplying those of Jige,
momentum with units of distance.

Principal of Angular Momentum

Let P (x, ») be the position of the particle of mass m, which moves under the actjo;
of the force F with components X and Y, at time 7.

Therefore the equations of motion are

2 2
X =m-d—; andY=m—{£—2y—
dt dt
([ dy
Now =m xd—J -y ﬂ\
de ~ dr)
‘o ,
dl o xd y  dxdy dydx d*x
dt \ di? dt dr drodr ’ dr® )
_ (I'Zy d%x (12y d’x
m|x—=-—y—07-|=x|m —y|m—
dt dt dr? di
=xY-yX=N

where N Is the moment of force F about the origin.
This result is known as the Principle of Angular Momentum.

Since any point in the plane can be taken as origin.
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MOMENTUM AND IMPULSE 241

Principle of Angular Momentum is
The rate of change of angular momentum of a particle moving in a plane about a
fixed point is equal to the moment of the force about the point.
Principle of Conservation of Angular Momentum

dJ , -
We have o =x Y -y X =N = Moment of the force about the origin

When N = 0, then dTJ =0 = J=constant
at

We know that the moment of a force about origin O vanishes ir either the force 1s
zero or the line of action of the force passes through the origin.

Thus we arrive at Principle of conservation of Angular Momentum which may be
stated as :

If a particle is in motion in a plane and there is no force acting on the particle or
the line of action of the force passes through the origin, then the angular momentim
about the origin remains constant.
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Art-4. Impulse of a Force

() Impulse of a constant force : When a force 1s cONStant in magnipyy,, oy

. , . _ : S s time during whieh it aere
direction, the impulse is the product of the force and the time during acty.

b

changes the velocity of the particle from u to v in time /, then

impulse P =Ft=(mf)t=m(f1)

If a constant force F, acting on a particle of mass s, produces an “LCClcr““““fuxq

=m (v -u) [ = waf
=mv-mu

= change in momentum
1mpulse = change of linear momentum in the direction of the force.
u=0 je. the particle starts fromrest, then P=mwv - 0= mw
impulse = momentum generated in time ¢
or force F = momentum generated per unit time.

If

(b) Impulse of a variable force : Let a variable force act on a particle of mass
for time T. Let F be the force at time ¢, then the impulse of the force s defined as the

T
integral J' F dt

0
N _d :
ow F = E (mv) [ of Newton’s second law|

where v is the velocity of the particle at time /.

dv
F=m— = Fa=m i
dt
the whole impulse in time T dy

ring which the veloeity of the particle changes
from u to v.

v
= I mdv=m - u)
U
=mv-mu
= Change in linear momentum
. impulse = change of linear momentum in the

Hence the impulse is the change of linear mome
or variable.

direction of the force.

ntum whether the force 15 cons™="

Note. Impulse is not a force. It is force x (jme and cquals change in momentum.

X (
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MOMENTUM AND IMPULSE

Art-5. Impulsive Force

Impulsive force is that which acts for a very short time but is great in magniude.

Examples :
(") Blow of a hammer

(7)) Tension in a string produced by a jerk
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Art-6. Motion With Respect to the Centre of Mass of System of Particles
Let (x, y1), (%2, y2), eoeen be the co-ord ates ¢ '

£ n rmrirebar § o oy -t
4l€S 01 2 NUMDET O copilanar pan

Masses 71y, My, ....... Let (X, ¥ )be the co-ordinates of their ce

m, x +—m, X, +..
s — i N - =
X =

m,+m, +..

)

m y +m,y, +..

i

(]

and

b
1l

m, =, T

i =
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.
M my Xy by i |
B e
il MY vy gy
L}
. TIASSCeS.
where My by v is the sumotm
' -

- Ve peet,
Differentating (1) and (2) w.r.t t, we g

d 3 {/\I (/\‘, (3)
Mo gy e b, —
it - <ot
(/ l ‘l“| ‘{.“v : (4)
' — )] — e )] —
and M - | T 27,

From (3) and (4), it is clear that

» particles is the same as that of a
The total momentum. in any direction, of the particles i

s

e velocity is equal to the velociry of the
particle whose mass is the whole mass and whose velocity is cqu

centre of gravity of the particles.

Differentiating (3) and (4) wirt.f, we get,

2 - 1%y (lz\'
d* 3 . £, (5
M—-—-;ml—]-+/n, = +.... (3)

ar? dr’ de

) pd

P <y [y

(l ) ( .1 ( Ja
and M —-=m =+, =+, --(6)

dr~ dr ¢ de©

These equations (3) and (6) give the acceleration of the centre of mass of the
particles.
Let the particles be subjected to giv

cnexternal force
the axes are (X, Y (X, Y)),

$ whose tomponents parallel to

Since the internal forces, be

ing of the nature
other

of action apg reaction, cancel each

cquations (S) and (6) can be Written ag
p
d“x : ,
\2 ;l\l +1\z+....
dt

e
d
and sz Y +Y,+,
dt
the motion of the centre of
as that of a mays equal to the
which actually act on the

gravity of the
whole masy of the
Separate particfeg.

Particles gy, any direction is the same
Particles gy acted on the py the forces

Note : When there g o external force aeting on (e Syste
of their centre of Mass remains cops

, Mol particles, (e momentut!
ant and g the vel
Lonstant

ocity of the centre of muass
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Art-T. Collision of Elastic Bodies

™~
'h

W have discussed the impact of two nelastic bodies (1.e. bodies which do not
pebound atter mpact). Now we shall discuss the impact of two elastic bodies (1.¢. bodie,
which rebound after impact).

There are two types of impact between two elastic bodies.

() Direet lmpact. /7 ihe mo bodies collide so that the direction of each 1s alone
the commoen normal ai the point of contact, the impact is said 10 be direct.

() Oblique Impact. /7 tie o bodies collide so that the direction of either or botl
i not along the common normal ar the point of contact, the impact is said to he oblique.

Art-8. Divect Impact of Two Smooth Spheres

‘ Let the two smooth spheres of masses m, and m> moving in straight hne with
velocities 17y and vy colhide each other. Find the velocities after impact. '

Proof : Inminally the spheres are moving with

wvelocity v, and v, both being measured

posive to the nght. Uy Uy
When the two spheres come into contact,

deformation takes place and reactional forces

come mto existence. These forces are very

large and exast tor a very short time as long as

the spheres remain in contact. Moreover, these Ut "2
reactional forces act along the common

normal 1.e. the line of centres and tend to push

two spheres apart. .

After contact, the spheres compress each
other till a stage armves when the compression =
1s greatest. which happens for a very short
unw T, say.

, Let v be the common velocity of two
. spheres when the compression 1s maximum. Then, for the two spheres, we have,

MU —muy = I(—F) dr=-P =5
\]

and MU — MUy = IF ar=PpP .(2)
0

. Where P 15 the magnitude of the impulse of the force acting on the sphere of mass .

- 2
From(l).myvy=muv+P = vpv=v+— -(2)

l:n\“]‘:)_ mMa Uy =l - P = .= -
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“ 4 1 .1 1 1, .
SppcTrt v Dyl \,
Subtracting (4) from (3), we get, ’
/ )
| [ 1 Pl i——.
‘ .- = VU, — ¥ )
"‘ ,).. })l - i . ’,,-‘- I
) m. :
i‘ ’ll . /'
| | | Ll /‘
U2 ) ‘, 5 '
” T Iv ‘ "\.)
7

After the instant of maxi

1 orirvd cf rectrtirtio - L =3
mum compression, the peried of resumn

another system of forces comes into existence which helps the two spheres recoyey Vi
original shape, These forces are also large and act for 2 very small perod T . say. Ley
U5 be the velocities of the two spheres just after the impact.
(’
& .m v’l -muy = j(—F') dt=-p’
0

’

[
and mzv’2 -my = J.F' dt=7Pp’
0

where P’ is the magnitude of the impulse of the force acting on the sphere of mass

From (6), m.v; =nmv-pP = v'l =1V—L
m,
|

From (7), mzv'2 =mv+P = 1)'2 =~ L

m
2

Subtractiilg (9) from (8), we get,

4
v - =_Pp' —I.-LL
! 2 m ' ]
My
( N
: : m] +”I.) 1
> v —v2 =-p|1____2
nll ”12
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283
Dividing (5) by (10). we get.
li _l! 5} ) -_
1 2 I vy -, 1
Y —1 ;oI S = e [ of (111
1”2 I Y ¢
> n'l -V =—e (U -1)
) 2) A1)

Thus result shows that the relative velocity of the mo spheres afier
constant ratio to their relative velocity before '
This is known as Newton’s experimental |

unpact bears g
mpact and s in the opposite

aw and the constant ¢ is called the ¢

airection

: i - oetticient
of restitution (or elasticity).
By the principle of conservation of lincar momentum.
)+ ' =
MV T MU, =mo+om,y, A13)
ny % (12) + (13) gives us
! '
MV + MV ==y e (Vi —vy) +my v+ my o,
LMy tm,v, —em, (!'l —v,)
u, 1= - )
Hll + ,”2
(13) = m; % (12) gives us
g
mz'u'2 +m, *v'2 =mv vyt em (V) -v,)
. mlv 1 +1712v 2 +cml (vl —1'2) X
v, = 1Y)
l”l + le

From (14) and (15). we get the velocities after impact.
Note : For perfectly elastic bodies ¢ = 1 and for inelastic bodies ¢ = 0
Cor 1. When the bodies are perfectly inelastic,

then c=0

from (12). v} - v, =0 = v} = v}

two bodies move together with the same velocity after impact.

From (10), P’ [ZL7™2 | —¢ = p'=0
my msy
from (8), v’l =V
and from (9), 'u'2 =v
v o= v'2 =v

; m o : : P avellineg with
two bodies remain in contact with maximum deformation travelling
velocity v

S — —

Scanned with CamScanner



< (SEMESTER-TV, .
154 GPECTRUM DYNAMICS (SEMES Py )

Cor 2. Whey, the bodies are perfectly elasne,
then e=1

from (12), u; - :';, - (V) =Vz)
impact but in ..

relative velocity after impact is the same as that before 1mp N the
opposite direction,
Art-9. Loss of Encrgy During Impact

Let my, m, be the masses of two spheres. Let vy, v2 be the velocities of the ty,
spheres before impact and o', v’, be the velocities after impact.

By the principle of conservation of linear momentum :

' (1)
2

'

My +my vy, =m, v,

+ v

By Newton's experimental law,

v; - v'z =—e (v, -v,y)

where ¢ is the co-efficient of restitution

1 4 : 1 ' 2
Change in kinetic energy = —m v'? +lm v 2| = m v
N 2 11 T2 7 17 7 2

1 m, +m 5
= —| mv'? +mv 2 -mv?-muv “]
2| my +m, =il 272 1 22
- I 2 )2 R o
[(ml +’”2)(’”1v1 +m, vl )—(m] .1113)(1;111] P, ]

2 (m, +m,)

|
=2 (m] +m, )

2

!

' 12 '
[m]m2 (v] -vz) +(m]vI +m,v))

2 2
—mlmz(v) —vz) - (mlv] +’”2“3) ]

m.m

1772 ' ry2 2 <y
=r———— e V. — v —(v, = v - 1
2(m, +m,) g —w2)" = 17V [ of (1)]

m.m
= —L12 [ (v, +1,) - (v, - )] [ of ()]
2(m] +m,)

—-m, m
=—1 2 (V1 —v2)* (1 - é).
2(’"1 +mz)

Since 0 < e < | (in general), the change in kinetic energy is negative. Hence, there 1

. _ ) m o, (l—ez) s
a loss of kinetic energy during impact and this loss equals —-2 (v, —va).

2(ml +m,)
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