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OSCILLATIONS

=

il Introduction

we have already discussed simple harmonic motion. |
jon. In many machines, there are oscillating (vibrasin

mo e )
fave 10 apply periodic forces. In this chapter, we will 50y

dy somc cases nkras

\rt-2. Free Vibrations

Most of the problems of vibrating motion can be discussed by a single mathemarnca

model called the harmonic oscillator. It consists of a parncl s ch 18
subjCCtt‘d to a force, which vanes linearly as the distance and direcied wwards the e

point.

Fe-kx o
N VN 2 2 2 e B l :
-
(i) v :
mg

Let a body of mass m be attached to an 1deal spring of force constant &, which
®¢ to move over a frictionless horizontal surface.

. " . 'y .l.l-.anr—-‘-‘ % m
The spring exerts no force on the particle m the posiion 0f €quIHEEE
figure (),

et aseth

N When the particle is displaced to the right by a distance x as figure (7). the sprIng
"5 force F 1o the left and is give by

\F=—kx
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126 by i distanee v Hgine (i), ll..

ticle 1s dlspluutl to the lett by ‘I'

vight and 1s give by
[e—ky

R} Vol &l L] H ILI
Thus, in each case, the force acting on 1l
motion of the harmonic 08¢

d?y .
m =" Fhy=0

When the par »
exerts a force Fto the

pmm']u is norestoring ane,

illator is
The equation of

(I\

m-‘—”-—- m—kx OF e’
2
or 1!_2_‘ + ;";_\-=O or —(-I—'-\' ! ‘”(:;X =0 A1)
1112 m dt
-k
where Wy = "

the motion of the harmonic oscillator is S.IL.M., The constant oy 15 calle (e

natural frequency of the oscillator.

In equation (1) S.F. is (DZ + w(f) x=0

AE. isD*+ mg =0
D’=- 0} > D=2iwy=0iwy
complete solution of (1) is
_ x=Acos wyt+Bsinwyt ' w(2)
Where A, B are constants of integration,
Let A=Aycosp, B=A, siﬁ¢

A*+B'= A7 = Ay=4A24RB2 |
B |

A
and cos¢= , Sin ¢ = |
yA? +B? JAZ2 + B2 |

Putting these values of A and B in (2), we get

- X =Ag cos @ cos wyt + A, sin ¢ sin w,t
or X = Aq cos (o - ¢) 03)
Since — | < cos (wot-¢) <1 -

x lies between — Ao and Ao;

the motion is periodic with period T = T4
(1)0

Here A is called amplj i
plitude, T is called peri L
period, T called frequency and wot - 9 1§

called phase of the harmonic oscillator.
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Art-3. Simple Pendulum

Definition. 1f a heavy patticle, tied to one
of a light inextensible string, the other end of
which is fixed, oscillates in a vertical cite le, the
system is called a simple pendulum,

Let O be the fixed point, / the length of the
string, A the lowest position of the patticle ot
mass m. Let P be the position of the particle a
any time ¢ such that ZAOP = @ (radians). Here
fis the small angular displacement in a vertical
plane.

end

The forces acting on the particle are

() its weight mg acting vertically mg
downwards.
(i) the tension T in the string along PO.
The cquation of motion of the particle along the tangent to the circle at P is
d?

0
m. | — =-mg sin 0
dt

L] ] » 1 N B N “ ‘
[** acceleration along the tangent to a circle of radius / is / d ( t

di*

d%0
or 1—2——5311)0 or [{I_O_:_L‘()

i dr? [ sin @ = 0 as O 1s smalll

or — = =29

This equation shows that the motion is sunple

2n\[‘
T

Note 1. The length [ of the string is called the length of the

Note 2. The time period depends
’ S upon / and the s of o . .
of 0, provided it is small. ¢ value of g at a place but is mdependent

harmonic and the time period

stmple pendulum.
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. 4. Second Pendulum
'ﬂte .

Let B', B be the extremities of the Path of the simple pendujum

time form B to B’ and back of g = 2 JI
g

1
time from B to B =—_27r\/7=n _I_
2 g P

We know that pendulum of a ¢Jock beats at each cxtremity.

time between two consecutive beats = 5 )

P —

g
A simple pendulum is called ¢ second

pendulum if the time
consecutive beats is one second.

interval benveen hvo

Let / be the correct length of a second’s pendulum

n\/z=1 => n2L=1 > J=8
g g 2

n
InC.G.S. system, g = 981 cmy/sec?, 7% = 9 g7

(= 9—81— =99 cm
9.87

InMKS. system, g =9.8 7% =987

;- 98

= —— = .992 metres
9.87

Art4, Formula for the Change in Number of Beats
Let # be the number of beats in a given time interva] T
* T=nx time of one beat

O T=pxg L

g

=L g

n oY/
From(l), logn - log I §_
T\l

-
\ ‘ l
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’ |
log n = log [’EJ + = (log g~ log )
a] T 2

Taking differentials of both sides, we get,

T
—]-dn . (—!— dg —%(ll) [ o L‘()mlanl}
2

n g

([" = —2—-( dg —7(”] (2)

where dn, dg, dl represent small changes in n, g, I respectively. |
From (2), we get the number of beats lost or gained corresponding 1o the S
variations in the values of length and gravity.

Particular Cases

() When only I changes and g remains fixed

dg =0
1
from (2), dn = —%.—[-dl ()

If dl is positive, then from (3), dn is negative

i.e. if the length of the pendulum is increased and g remains same, then there s 4
decrease in the number of beats in any given time interval and hence the clock becomes

slow.

Similarly if d/ is negative, then form (3), dn is positive i.e. if the length of the
pendulum is shortened and g remains same, then there is an increase in the number of
beats in any given time interval and hence the clock runs fast.

() 'When only g changes and / remains fixed.
dl=0

from (2), dn = %.?dg ' (4)

: dn is positive if dg is positive i.e. if g increases, there is an increase n the
numbe1 of beats in any given time interval and hence the clock runs fast. Simularly if ¢

decreases, then there is a decrease in the number of beats j in any given time interval and
hence the clock becomes slow.

Art-5. Change in Value of g and Number of Beats

/ (1) When the pendulum is carried to ¢ mountain at height h above the surface of
earth. LA

We know that, by Newton’s gravitationa] law,

;= £ where r is the di :

g ’—2 where 715 the distance of the point outside the surface of earth from the
centre of the earth and u¢ 1s constant.

log g =logu—-2logr

Scanned with CamScanner



st —
0 1 2 Ir 1 2
= ’(Ig=0——;—(l => -;’-({gz__‘h-
g 4
Here dr="
1, _ ok
’g'dg 2 ¥ sl
n dg
NoWdﬂ" 2 g
_ n 2/1
an = -2" —_r_ | [ of (1))
nh
= e .

This equation shows that when a pendulum is carried to a high mountain, 1t loses
qumber of beats 10 any given time interval and so the clock becomes slow.
(i) When the pendulum is carried inside a mine at a depth h below the surface of
earth. '

We know that for the points inside the surface of the earth, g = Ar

where 7 is the distance of the point from the centre of the earth and A 1s constant.

log g =logA +logr

> -}-dg=0+-1—dr =='idg=ldr
g r g r
Here dr=-h
-1—dg=—ﬁ .A2)
g r
Nowa’n=£d—g (1n=’—1(—£] %= of (2)]
2 g 2\ r
a’n=—ﬂ
2r

i bThns equation shows that when a pendulum is carried to a deep mine, it loses
1oer of beats in any given time interval and so the clock becomes slow.

Note : o
R ethL _F_IOm above discussion, it is clear that the pendulum, always becomes slow
\ eritis carried to a high mountain or into a deep mine.

Ot 2. We have

/
dn=_11 in(i), dn= __'ﬂ'_ in (if)
P 2r

time lost by a clock when carried to a depth 4 is half of the time lost when it is

Carriedl
to :
the same height h above the surface of earth.
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Art-6. Conical Pendulum

Definition. A heavy particle attached 1o one end of a
heht mextensible strmg, the other end of which is tied
to a hxed pomt describes a horizontal circle with
constant angular velocity so that the string itself
describes a nght circular cone with the fixed point as
i vertex and the vertical line through the fixed point
an the axas of the cone, the system thus formed is
called a conical |)(‘Il('ll[ll||1,

[eta heavy particle of mass m be attached to
one end of a hight mextensible string of length / and
the other end of which 1s tied (0 a fixed point O, Let
the particle deseribe ahorizontal cirele of radius - and
centre ¢ with constant :lng",ll]:ll \Jclm‘i(‘y W, Let P be

the position of the particle at any time ¢ and 2COP = ¢
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05(|Iv|. .
rhe fOrces acting on the particle are :

(0 [ts weight mg acting vertically downwards and

(,',-) the
o there is no motion in a vertical direction

tension T of the string along PO

Sinc
T cos 6 =mg
LA

. particle describ b : ‘
s the P es a horizontal circle of radius r with constant angular

- entripetal fo 2 .
elocity . the centrip rce m r « is supplied by the horizontal component T sin 0 of

the jension -
Now when We consider the horizontal circular motion of P, we get
Tsin@ =1 r o)
: r
But in A OCP, sin 0= 7 = r=/sinb

from (2), T sin @ = m I sin 0. w?

(sinf=0=>0=0= the string is vertical i.e. the system is no longerr a conical

Bu
pendulum.
rejecting this, we get,
T=ml& (3)
from (1), we get,
m | @ cos 6 = mg, or cos 0= -1-0? (4)

We know that cos f=<1

¥

m is possible only when —é,— <1
' [

-

motion in a conical pendulu
0

ie. ifw’ = i‘;"- je. ifw = Ji;’y—:

the least angular velocity requil
d [ of (4]

pendulum is \/g ,
/
g =

InA OCP, cos 0 = L or =5
! lo [

ed by a particle 1o move in a conical

s p=-5 A5
2

which is independent of /
ow the fixed point is independent of the length of

e - -ithedepth of the particle bel
String and is invérsely proportional 10 the square of the angular yelocity.
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Lot} be the tuw of one revolution
2n - |

A Ur(h]l ‘

2 s
s — = |= ==
w Je'h

h
» |=2a
L9
the time of resolution varies directly as the square roof of the depth o the

sarticle below the fived point.
olutions made per second.

L et # be the number of rev
[+ of(s))

) 1 1 8
p=2an  »>—— =a= = T gl
wRes wm AL

AN
h—--—_——z-
dn n

From (3), I'=m lo'=mlQ2n )

T=d4x'wm!
¢ the tangent at P to the circle is perpendicular to each of the forces m gandT,

Cor. 1. Sin¢
ponents of the forces acting on the particle

algebraic sum of the tangential com

18 ZRTO.
5

speed of the particle is uniform.

Cor. 2. Prove that the semi-vertical angle 6 of a conical pendulum is given by tan 6 = —.
Iy

where v is the speed of the particle and r the radius of the horizontal circle

described by the particle.
A1)

Proof. We have Tcos@=mg
Tsin@=mre

and
. v?
or Tsin®=m— (L) [ v =ro)
5 .

Dividing (2) by (1), we get,

By

-

tané) = —
rg

Art-7. If a particle moving in a conical pendulum is also constrained to move Of a
n show tha!

smooth !xorizomal surface at_a depth / below the fixed end of the string, the
the maximum angular velocity that the particle can acquire without losing contact with

the surface 1s J—%-

Scanned with CamScanner



R

11 LATIONS
OsCILLA 20
PrOOf: Since the particle moving in a
-onical pendulum is also constrained to 0
L .
move on a smooth horizontal surface.
there 1s an additional force
R, the normal reaction due to contact of
the horizontal surface on the particle,
scting vertically upward.
The equations of motion of the ': P
particle are
R+Tcos O =mg (1)
and Tsin0=mro? mg
or Tsin®=mlsinb. w?
or (T—-m ij) sind =0
But sin6 # 0,
T=mlw (2)

: . g
contact with the surface 1s [= -

From (1) and (2), we get
R=mg-Tcos®=mg-mle cosb
=mg—-mhaw’

R=m(g-hw’)

[~ h=1cos 0]

Now the particle will remain in contact with the smooth horizontal surface if R > 0.

re. ifg>hw ie. it 0*< & icifo< |5

i h

Hence the maximum angular velocity that the particle can acquire without losing

'

h
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